Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.495
Filtrar
1.
Nature ; 628(8006): 212-220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509361

RESUMO

RAD51 is the central eukaryotic recombinase required for meiotic recombination and mitotic repair of double-strand DNA breaks (DSBs)1,2. However, the mechanism by which RAD51 functions at DSB sites in chromatin has remained elusive. Here we report the cryo-electron microscopy structures of human RAD51-nucleosome complexes, in which RAD51 forms ring and filament conformations. In the ring forms, the N-terminal lobe domains (NLDs) of RAD51 protomers are aligned on the outside of the RAD51 ring, and directly bind to the nucleosomal DNA. The nucleosomal linker DNA that contains the DSB site is recognized by the L1 and L2 loops-active centres that face the central hole of the RAD51 ring. In the filament form, the nucleosomal DNA is peeled by the RAD51 filament extension, and the NLDs of RAD51 protomers proximal to the nucleosome bind to the remaining nucleosomal DNA and histones. Mutations that affect nucleosome-binding residues of the RAD51 NLD decrease nucleosome binding, but barely affect DNA binding in vitro. Consistently, yeast Rad51 mutants with the corresponding mutations are substantially defective in DNA repair in vivo. These results reveal an unexpected function of the RAD51 NLD, and explain the mechanism by which RAD51 associates with nucleosomes, recognizes DSBs and forms the active filament in chromatin.


Assuntos
Microscopia Crioeletrônica , Quebras de DNA de Cadeia Dupla , Nucleossomos , Rad51 Recombinase , Proteínas de Saccharomyces cerevisiae , Humanos , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Reparo do DNA/genética , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Rad51 Recombinase/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mutação , Domínios Proteicos , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Ligação Proteica
2.
Nature ; 628(8008): 657-663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509367

RESUMO

In response to pathogen infection, gasdermin (GSDM) proteins form membrane pores that induce a host cell death process called pyroptosis1-3. Studies of human and mouse GSDM pores have revealed the functions and architectures of assemblies comprising 24 to 33 protomers4-9, but the mechanism and evolutionary origin of membrane targeting and GSDM pore formation remain unknown. Here we determine a structure of a bacterial GSDM (bGSDM) pore and define a conserved mechanism of pore assembly. Engineering a panel of bGSDMs for site-specific proteolytic activation, we demonstrate that diverse bGSDMs form distinct pore sizes that range from smaller mammalian-like assemblies to exceptionally large pores containing more than 50 protomers. We determine a cryo-electron microscopy structure of a Vitiosangium bGSDM in an active 'slinky'-like oligomeric conformation and analyse bGSDM pores in a native lipid environment to create an atomic-level model of a full 52-mer bGSDM pore. Combining our structural analysis with molecular dynamics simulations and cellular assays, our results support a stepwise model of GSDM pore assembly and suggest that a covalently bound palmitoyl can leave a hydrophobic sheath and insert into the membrane before formation of the membrane-spanning ß-strand regions. These results reveal the diversity of GSDM pores found in nature and explain the function of an ancient post-translational modification in enabling programmed host cell death.


Assuntos
Gasderminas , Myxococcales , Microscopia Crioeletrônica , Gasderminas/química , Gasderminas/metabolismo , Gasderminas/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Simulação de Dinâmica Molecular , Myxococcales/química , Myxococcales/citologia , Myxococcales/ultraestrutura , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteólise , Piroptose
3.
FEBS Lett ; 598(8): 875-888, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553946

RESUMO

Mammalian Ca2+-dependent Slo K+ channels can stably associate with auxiliary γ subunits which fundamentally alter their behavior. By a so far unknown mechanism, the four γ subunits reduce the need for voltage-dependent activation and, thereby, allow Slo to open independently of an action potential. Here, using cryo-EM, we reveal how the transmembrane helix of γ1/LRRC26 binds and presumably stabilizes the activated voltage-sensor domain of Slo1. The activation is further enhanced by an intracellular polybasic stretch which locally changes the charge gradient across the membrane. Our data provide a possible explanation for Slo1 regulation by the four γ subunits and also their different activation efficiencies. This suggests a novel activation mechanism of voltage-gated ion channels by auxiliary subunits.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Subunidades Proteicas , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química , Animais , Ativação do Canal Iônico , Modelos Moleculares , Células HEK293 , Ligação Proteica , Domínios Proteicos
4.
J Biol Chem ; 300(3): 105729, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336296

RESUMO

RNase P and RNase mitochondrial RNA processing (MRP) are ribonucleoproteins (RNPs) that consist of a catalytic RNA and a varying number of protein cofactors. RNase P is responsible for precursor tRNA maturation in all three domains of life, while RNase MRP, exclusive to eukaryotes, primarily functions in rRNA biogenesis. While eukaryotic RNase P is associated with more protein cofactors and has an RNA subunit with fewer auxiliary structural elements compared to its bacterial cousin, the double-anchor precursor tRNA recognition mechanism has remarkably been preserved during evolution. RNase MRP shares evolutionary and structural similarities with RNase P, preserving the catalytic core within the RNA moiety inherited from their common ancestor. By incorporating new protein cofactors and RNA elements, RNase MRP has established itself as a distinct RNP capable of processing ssRNA substrates. The structural information on RNase P and MRP helps build an evolutionary trajectory, depicting how emerging protein cofactors harmonize with the evolution of RNA to shape different functions for RNase P and MRP. Here, we outline the structural and functional relationship between RNase P and MRP to illustrate the coevolution of RNA and protein cofactors, a key driver for the extant, diverse RNP world.


Assuntos
Endorribonucleases , Evolução Molecular , Subunidades Proteicas , RNA Catalítico , Ribonuclease P , Coenzimas , Endorribonucleases/química , Endorribonucleases/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ribonuclease P/química , Ribonuclease P/metabolismo , Processamento Pós-Transcricional do RNA , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Especificidade por Substrato , Eucariotos/enzimologia
5.
J Biol Chem ; 300(3): 105751, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354779

RESUMO

Eukaryotic DNA clamp is a trimeric protein featuring a toroidal ring structure that binds DNA on the inside of the ring and multiple proteins involved in DNA transactions on the outside. Eukaryotes have two types of DNA clamps: the replication clamp PCNA and the checkpoint clamp RAD9-RAD1-HUS1 (9-1-1). 9-1-1 activates the ATR-CHK1 pathway in DNA damage checkpoint, regulating cell cycle progression. Structure of 9-1-1 consists of two moieties: a hetero-trimeric ring formed by PCNA-like domains of three subunits and an intrinsically disordered C-terminal region of the RAD9 subunit, called RAD9 C-tail. The RAD9 C-tail interacts with the 9-1-1 ring and disrupts the interaction between 9-1-1 and DNA, suggesting a negative regulatory role for this intramolecular interaction. In contrast, RHINO, a 9-1-1 binding protein, interacts with both RAD1 and RAD9 subunits, positively regulating checkpoint activation by 9-1-1. This study presents a biochemical and structural analysis of intra- and inter-molecular interactions on the 9-1-1 ring. Biochemical analysis indicates that RAD9 C-tail binds to the hydrophobic pocket on the PCNA-like domain of RAD9, implying that the pocket is involved in multiple protein-protein interactions. The crystal structure of the 9-1-1 ring in complex with a RHINO peptide reveals that RHINO binds to the hydrophobic pocket of RAD9, shedding light on the RAD9-binding motif. Additionally, the study proposes a structural model of the 9-1-1-RHINO quaternary complex. Together, these findings provide functional insights into the intra- and inter-molecular interactions on the front side of RAD9, elucidating the roles of RAD9 C-tail and RHINO in checkpoint activation.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Complexos Multiproteicos , Subunidades Proteicas , Humanos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Interações Hidrofóbicas e Hidrofílicas , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Domínios Proteicos
6.
Nature ; 627(8002): 189-195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355798

RESUMO

Phagocyte NADPH oxidase, a protein complex with a core made up of NOX2 and p22 subunits, is responsible for transferring electrons from intracellular NADPH to extracellular oxygen1. This process generates superoxide anions that are vital for killing pathogens1. The activation of phagocyte NADPH oxidase requires membrane translocation and the binding of several cytosolic factors2. However, the exact mechanism by which cytosolic factors bind to and activate NOX2 is not well understood. Here we present the structure of the human NOX2-p22 complex activated by fragments of three cytosolic factors: p47, p67 and Rac1. The structure reveals that the p67-Rac1 complex clamps onto the dehydrogenase domain of NOX2 and induces its contraction, which stabilizes the binding of NADPH and results in a reduction of the distance between the NADPH-binding domain and the flavin adenine dinucleotide (FAD)-binding domain. Furthermore, the dehydrogenase domain docks onto the bottom of the transmembrane domain of NOX2, which reduces the distance between FAD and the inner haem. These structural rearrangements might facilitate the efficient transfer of electrons between the redox centres in NOX2 and lead to the activation of phagocyte NADPH oxidase.


Assuntos
NADPH Oxidase 2 , Fagócitos , Humanos , Elétrons , Ativação Enzimática , Flavina-Adenina Dinucleotídeo/metabolismo , Heme/química , Heme/metabolismo , NADP/metabolismo , NADPH Oxidase 2/química , NADPH Oxidase 2/metabolismo , Fagócitos/enzimologia , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Superóxidos/metabolismo , Ligação Proteica
7.
Structure ; 32(4): 393-399.e3, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38237595

RESUMO

F1Fo ATP synthase interchanges phosphate transfer energy and proton motive force via a rotary catalytic mechanism and isolated F1-ATPase subcomplexes can also hydrolyze ATP to generate rotation of their central γ rotor subunit. As ATP is hydrolyzed, the F1-ATPase cycles through a series of conformational states that mediates unidirectional rotation of the rotor. However, even in the absence of a rotor, the α and ß subunits are still able to pass through a series of conformations, akin to those that generate rotation. Here, we use cryoelectron microscopy to establish the structures of these rotorless states. These structures indicate that cooperativity in this system is likely mediated by contacts between the ß subunit lever domains, irrespective of the presence of the γ rotor subunit. These findings provide insight into how long-range information may be transferred in large biological systems.


Assuntos
Adenosina Trifosfatases , Trifosfato de Adenosina , Hidrólise , Microscopia Crioeletrônica , Subunidades Proteicas/química , Conformação Proteica , Rotação
8.
Food Chem ; 441: 138371, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38218148

RESUMO

The qualities of wheat dough are influenced by the high-molecular-weight glutenin subunits (HMW-GS), a critical component of wheat gluten protein. However, it is still unknown how HMW-GS silencing affects the aggregation characteristics of dough. Two groups of near-isogenic wheat were used to study the effects of HMW-GS silencing on dough aggregation characteristics, dough texture characteristics, and dough microstructure. It was observed that the content of gliadin in LH-11 strain significantly increased compared to the wild-type (WT). Additionally, the amount of glutenin macropolymer and the glutenin/gliadin both decreased. The aggregation characteristics and rheological characteristics of the dough in LH-11 strain were significantly reduced, and the content of ß-sheet in the dough was significantly reduced. The HMW-GS silencing resulted in a reduction in the aggregation of the gluten network in the dough, which related to the alteration of the secondary and microstructure of the gluten.


Assuntos
Gliadina , Glutens , Gliadina/metabolismo , Peso Molecular , Glutens/química , Triticum/química , Farinha , Subunidades Proteicas/química
9.
J Biol Chem ; 300(1): 105576, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110033

RESUMO

The sixth family phosphodiesterases (PDE6) are principal effector enzymes of the phototransduction cascade in rods and cones. Maturation of nascent PDE6 protein into a functional enzyme relies on a coordinated action of ubiquitous chaperone HSP90, its specialized cochaperone aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), and the regulatory Pγ-subunit of PDE6. Deficits in PDE6 maturation and function underlie severe visual disorders and blindness. Here, to elucidate the roles of HSP90, AIPL1, and Pγ in the maturation process, we developed the heterologous expression system of human cone PDE6C in insect cells allowing characterization of the purified enzyme. We demonstrate that in the absence of Pγ, HSP90, and AIPL1 convert the inactive and aggregating PDE6C species into dimeric PDE6C that is predominantly misassembled. Nonetheless, a small fraction of PDE6C is properly assembled and fully functional. From the analysis of mutant mice that lack both rod Pγ and PDE6C, we conclude that, in contrast to the cone enzyme, no maturation of rod PDE6AB occurs in the absence of Pγ. Co-expression of PDE6C with AIPL1 and Pγ in insect cells leads to a fully mature enzyme that is equivalent to retinal PDE6. Lastly, using immature PDE6C and purified chaperone components, we reconstituted the process of the client maturation in vitro. Based on this analysis we propose a scheme for the PDE6 maturation process.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6 , Células Fotorreceptoras Retinianas Cones , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cegueira/genética , Linhagem Celular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/deficiência , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mutação , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Células Fotorreceptoras Retinianas Cones/química , Células Fotorreceptoras Retinianas Cones/metabolismo
10.
Science ; 382(6677): 1404-1411, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38127736

RESUMO

Gain-of-function mutations in LRRK2, which encodes the leucine-rich repeat kinase 2 (LRRK2), are the most common genetic cause of late-onset Parkinson's disease. LRRK2 is recruited to membrane organelles and activated by Rab29, a Rab guanosine triphosphatase encoded in the PARK16 locus. We present cryo-electron microscopy structures of Rab29-LRRK2 complexes in three oligomeric states, providing key snapshots during LRRK2 recruitment and activation. Rab29 induces an unexpected tetrameric assembly of LRRK2, formed by two kinase-active central protomers and two kinase-inactive peripheral protomers. The central protomers resemble the active-like state trapped by the type I kinase inhibitor DNL201, a compound that underwent a phase 1 clinical trial. Our work reveals the structural mechanism of LRRK2 spatial regulation and provides insights into LRRK2 inhibitor design for Parkinson's disease treatment.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Proteínas rab de Ligação ao GTP , Humanos , Antiparkinsonianos/química , Antiparkinsonianos/farmacologia , Domínio Catalítico , Microscopia Crioeletrônica , Desenho de Fármacos , Mutação com Ganho de Função , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Subunidades Proteicas/química , Proteínas rab de Ligação ao GTP/química , Multimerização Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
11.
J Biol Chem ; 299(12): 105473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979916

RESUMO

Vacuolar H+-ATPases (V-ATPases) are highly conserved multisubunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue- and organelle-specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle-specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms, and we hypothesize that the aNT domains of these isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. We determined that bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP-binding sites, we identified potential binding sites in the HuaNT domains by sequence comparisons and existing subunit structures and models. We found that mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.


Assuntos
Fosfatos de Fosfatidilinositol , Subunidades Proteicas , ATPases Vacuolares Próton-Translocadoras , Humanos , Sítios de Ligação , Endossomos/enzimologia , Endossomos/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Lisossomos/enzimologia , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Domínios Proteicos
12.
Curr Opin Neurobiol ; 83: 102806, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37950957

RESUMO

N-methyl-d-aspartate receptors (NMDARs) belong to the ionotropic glutamate receptors (iGluRs) superfamily and act as coincidence detectors that are crucial to neuronal development and synaptic plasticity. They typically assemble as heterotetramers of two obligatory GluN1 subunits and two alternative GluN2 (from 2A to 2D) and/or GluN3 (3A and 3B) subunits. These alternative subunits mainly determine the diverse biophysical and pharmacological properties of different NMDAR subtypes. Over the past decade, the unprecedented advances in structure elucidation of these tetrameric NMDARs have provided atomic insights into channel gating, allosteric modulation and the action of therapeutic drugs. A wealth of structural and functional information would accelerate the artificial intelligence-based drug design to exploit more NMDAR subtype-specific molecules for the treatment of neurological and psychiatric disorders.


Assuntos
Inteligência Artificial , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Regulação Alostérica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
13.
PLoS Comput Biol ; 19(10): e1011545, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37831724

RESUMO

TRPV Ion channels are sophisticated molecular sensors designed to respond to distinct temperature thresholds. The recent surge in cryo-EM structures has provided numerous insights into the structural rearrangements accompanying their opening and closing; however, the molecular mechanisms by which TRPV channels establish precise and robust temperature sensing remain elusive. In this work we employ molecular simulations, multi-ensemble contact analysis, graph theory, and machine learning techniques to reveal the temperature-sensitive residue-residue interactions driving allostery in TRPV3. We find that groups of residues exhibiting similar temperature-dependent contact frequency profiles cluster at specific regions of the channel. The dominant mode clusters on the ankyrin repeat domain and displays a linear melting trend while others display non-linear trends. These modes describe the residue-level temperature response patterns that underlie the channel's functional dynamics. With network analysis, we find that the community structure of the channel changes with temperature. And that a network of high centrality contacts connects distant regions of the protomer to the gate, serving as a means for the temperature-sensitive contact modes to allosterically regulate channel gating. Using a random forest model, we show that the contact states of specific temperature-sensitive modes are indeed predictive of the channel gate's state. Supporting the physical validity of these modes and networks are several residues identified with our analyses that are reported in literature to be functionally critical. Our results offer high resolution insight into thermo-TRP channel function and demonstrate the utility of temperature-sensitive contact analysis.


Assuntos
Repetição de Anquirina , Temperatura , Subunidades Proteicas/química
14.
J Biol Chem ; 299(10): 105227, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37673338

RESUMO

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) auxiliary subunits are specialized, nontransient binding partners of AMPARs that modulate AMPAR channel gating properties and pharmacology, as well as their biogenesis and trafficking. The most well-characterized families of auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs), cornichon homologs (CNIHs), and the more recently discovered GSG1-L. These auxiliary subunits can promote or reduce surface expression of AMPARs (composed of GluA1-4 subunits) in neurons, thereby impacting their functional role in membrane signaling. Here, we show that CNIH-2 enhances the tetramerization of WT and mutant AMPARs, presumably by increasing the overall stability of the tetrameric complex, an effect that is mainly mediated by interactions with the transmembrane domain of the receptor. We also find CNIH-2 and CNIH-3 show receptor subunit-specific actions in this regard with CNIH-2 enhancing both GluA1 and GluA2 tetramerization, whereas CNIH-3 only weakly enhances GluA1 tetramerization. These results are consistent with the proposed role of CNIHs as endoplasmic reticulum cargo transporters for AMPARs. In contrast, TARP γ-2, TARP γ-8, and GSG1-L have no or negligible effect on AMPAR tetramerization. On the other hand, TARP γ-2 can enhance receptor tetramerization but only when directly fused with the receptor at a maximal stoichiometry. Notably, surface expression of functional AMPARs was enhanced by CNIH-2 to a greater extent than TARP γ-2, suggesting that this distinction aids in maturation and membrane expression. These experiments define a functional distinction between CNIHs and other auxiliary subunits in the regulation of AMPAR biogenesis.


Assuntos
Ácido Glutâmico , Multimerização Proteica , Receptores de AMPA , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Domínios Proteicos , Receptores de AMPA/química , Receptores de AMPA/genética , Transdução de Sinais , Subunidades Proteicas/química , Subunidades Proteicas/genética , Células HEK293 , Humanos
15.
J Biol Chem ; 299(10): 105204, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660926

RESUMO

Enzymes that regulate the degree of histone H3 lysine 4 (H3K4) methylation are crucial for proper cellular differentiation and are frequently mutated in cancer. The Mixed lineage leukemia (MLL) family of enzymes deposit H3K4 mono-, di-, or trimethylation at distinct genomic locations, requiring precise spatial and temporal control. Despite evidence that the degree of H3K4 methylation is controlled in part by a hierarchical assembly pathway with key subcomplex components, we previously found that the assembled state of the MLL1 core complex is not favored at physiological temperature. To better understand this paradox, we tested the hypothesis that increasing the concentration of subunits in a biomolecular condensate overcomes this thermodynamic barrier via mass action. Here, we demonstrate that MLL1 core complex phase separation stimulates enzymatic activity up to 60-fold but not primarily by concentrating subunits into droplets. Instead, we found that stimulated activity is largely due to the formation of an altered oligomeric scaffold that greatly reduces substrate Km. We posit that phase separation-induced scaffolding of the MLL1 core complex is a potential "switch-like" mechanism for spatiotemporal control of H3K4 methylation through the rapid formation or dissolution of biomolecular condensates within RNA Pol II transcription factories.


Assuntos
Histonas , Modelos Moleculares , Proteína de Leucina Linfoide-Mieloide , Subunidades Proteicas , Humanos , Histonas/metabolismo , Metilação , Proteína de Leucina Linfoide-Mieloide/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Estrutura Quaternária de Proteína , Termodinâmica , Ativação Enzimática
16.
Nature ; 622(7981): 195-201, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730991

RESUMO

Type A γ-aminobutyric acid receptors (GABAARs) are the principal inhibitory receptors in the brain and the target of a wide range of clinical agents, including anaesthetics, sedatives, hypnotics and antidepressants1-3. However, our understanding of GABAAR pharmacology has been hindered by the vast number of pentameric assemblies that can be derived from 19 different subunits4 and the lack of structural knowledge of clinically relevant receptors. Here, we isolate native murine GABAAR assemblies containing the widely expressed α1 subunit and elucidate their structures in complex with drugs used to treat insomnia (zolpidem (ZOL) and flurazepam) and postpartum depression (the neurosteroid allopregnanolone (APG)). Using cryo-electron microscopy (cryo-EM) analysis and single-molecule photobleaching experiments, we uncover three major structural populations in the brain: the canonical α1ß2γ2 receptor containing two α1 subunits, and two assemblies containing one α1 and either an α2 or α3 subunit, in which the single α1-containing receptors feature a more compact arrangement between the transmembrane and extracellular domains. Interestingly, APG is bound at the transmembrane α/ß subunit interface, even when not added to the sample, revealing an important role for endogenous neurosteroids in modulating native GABAARs. Together with structurally engaged lipids, neurosteroids produce global conformational changes throughout the receptor that modify the ion channel pore and the binding sites for GABA and insomnia medications. Our data reveal the major α1-containing GABAAR assemblies, bound with endogenous neurosteroid, thus defining a structural landscape from which subtype-specific drugs can be developed.


Assuntos
Microscopia Crioeletrônica , Neuroesteroides , Receptores de GABA-A , Ácido gama-Aminobutírico , Animais , Camundongos , Sítios de Ligação/efeitos dos fármacos , Depressão Pós-Parto/tratamento farmacológico , Flurazepam/farmacologia , Ácido gama-Aminobutírico/metabolismo , Hipnóticos e Sedativos/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Neuroesteroides/metabolismo , Neuroesteroides/farmacologia , Fotodegradação , Pregnanolona/farmacologia , Conformação Proteica/efeitos dos fármacos , Subunidades Proteicas/química , Subunidades Proteicas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Receptores de GABA-A/ultraestrutura , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Zolpidem/farmacologia
17.
Nature ; 621(7977): 206-214, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648856

RESUMO

Transient receptor potential (TRP) channels are a large, eukaryotic ion channel superfamily that control diverse physiological functions, and therefore are attractive drug targets1-5. More than 210 structures from more than 20 different TRP channels have been determined, and all are tetramers4. Despite this wealth of structures, many aspects concerning TRPV channels remain poorly understood, including the pore-dilation phenomenon, whereby prolonged activation leads to increased conductance, permeability to large ions and loss of rectification6,7. Here, we used high-speed atomic force microscopy (HS-AFM) to analyse membrane-embedded TRPV3 at the single-molecule level and discovered a pentameric state. HS-AFM dynamic imaging revealed transience and reversibility of the pentamer in dynamic equilibrium with the canonical tetramer through membrane diffusive protomer exchange. The pentamer population increased upon diphenylboronic anhydride (DPBA) addition, an agonist that has been shown to induce TRPV3 pore dilation. On the basis of these findings, we designed a protein production and data analysis pipeline that resulted in a cryogenic-electron microscopy structure of the TRPV3 pentamer, showing an enlarged pore compared to the tetramer. The slow kinetics to enter and exit the pentameric state, the increased pentamer formation upon DPBA addition and the enlarged pore indicate that the pentamer represents the structural correlate of pore dilation. We thus show membrane diffusive protomer exchange as an additional mechanism for structural changes and conformational variability. Overall, we provide structural evidence for a non-canonical pentameric TRP-channel assembly, laying the foundation for new directions in TRP channel research.


Assuntos
Multimerização Proteica , Canais de Cátion TRPV , Anidridos/química , Anidridos/farmacologia , Análise de Dados , Difusão , Subunidades Proteicas/química , Subunidades Proteicas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Canais de Cátion TRPV/química , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/ultraestrutura , Microscopia de Força Atômica , Terapia de Alvo Molecular , Microscopia Crioeletrônica , Estrutura Quaternária de Proteína/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
18.
Proc Natl Acad Sci U S A ; 120(33): e2306165120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549294

RESUMO

Arp2/3 complex generates branched actin networks that drive fundamental processes such as cell motility and cytokinesis. The complex comprises seven proteins, including actin-related proteins (Arps) 2 and 3 and five scaffolding proteins (ArpC1-ArpC5) that mediate interactions with a pre-existing (mother) actin filament at the branch junction. Arp2/3 complex exists in two main conformations, inactive with the Arps interacting end-to-end and active with the Arps interacting side-by-side like subunits of the short-pitch helix of the actin filament. Several cofactors drive the transition toward the active state, including ATP binding to the Arps, WASP-family nucleation-promoting factors (NPFs), actin monomers, and binding of Arp2/3 complex to the mother filament. The precise contribution of each cofactor to activation is poorly understood. We report the 3.32-Å resolution cryo-electron microscopy structure of a transition state of Arp2/3 complex activation with bound constitutively dimeric NPF. Arp2/3 complex-binding region of the NPF N-WASP was fused C-terminally to the α and ß subunits of the CapZ heterodimer. One arm of the NPF dimer binds Arp2 and the other binds actin and Arp3. The conformation of the complex is intermediate between those of inactive and active Arp2/3 complex. Arp2, Arp3, and actin also adopt intermediate conformations between monomeric (G-actin) and filamentous (F-actin) states, but only actin hydrolyzes ATP. In solution, the transition complex is kinetically shifted toward the short-pitch conformation and has higher affinity for F-actin than inactive Arp2/3 complex. The results reveal how all the activating cofactors contribute in a coordinated manner toward Arp2/3 complex activation.


Assuntos
Multimerização Proteica , Ligação Proteica , Modelos Moleculares , Actinas/química , Actinas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Humanos , Animais , Camundongos
19.
J Biol Chem ; 299(9): 105132, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544648

RESUMO

Voltage-gated sodium (NaV) channels drive the upstroke of the action potential and are comprised of a pore-forming α-subunit and regulatory ß-subunits. The ß-subunits modulate the gating, trafficking, and pharmacology of the α-subunit. These functions are routinely assessed by ectopic expression in heterologous cells. However, currently available expression systems may not capture the full range of these effects since they contain endogenous ß-subunits. To better reveal ß-subunit functions, we engineered a human cell line devoid of endogenous NaV ß-subunits and their immediate phylogenetic relatives. This new cell line, ß-subunit-eliminated eHAP expression (BeHAPe) cells, were derived from haploid eHAP cells by engineering inactivating mutations in the ß-subunits SCN1B, SCN2B, SCN3B, and SCN4B, and other subfamily members MPZ (myelin protein zero(P0)), MPZL1, MPZL2, MPZL3, and JAML. In diploid BeHAPe cells, the cardiac NaV α-subunit, NaV1.5, was highly sensitive to ß-subunit modulation and revealed that each ß-subunit and even MPZ imparted unique gating properties. Furthermore, combining ß1 and ß2 with NaV1.5 generated a sodium channel with hybrid properties, distinct from the effects of the individual subunits. Thus, this approach revealed an expanded ability of ß-subunits to regulate NaV1.5 activity and can be used to improve the characterization of other α/ß NaV complexes.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5 , Subunidades Proteicas , Subunidades beta do Canal de Sódio Disparado por Voltagem , Humanos , Potenciais de Ação , Linhagem Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Fosfoproteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades beta do Canal de Sódio Disparado por Voltagem/química , Subunidades beta do Canal de Sódio Disparado por Voltagem/deficiência , Subunidades beta do Canal de Sódio Disparado por Voltagem/genética , Subunidades beta do Canal de Sódio Disparado por Voltagem/metabolismo , Mutação
20.
Food Chem ; 429: 136972, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506662

RESUMO

Prolyl endopeptidase can partially degrade soybean protein B3 subunit and alleviate soy sauce secondary precipitate. In this study, the influences of ultrasound-assisted prolyl endopeptidase on the degradation of soybean protein B3 subunit of soy sauce and primary mechanism were investigated using SDS-PAGE, MALDI-TOF-MS, circular dichromatic spectrometer, fluorescence spectra, etc. Results showed that ultrasound-assisted prolyl endopeptidase enhanced 72% degradation rate of B3 subunit and reduced soy sauce secondary precipitate remarkably, meanwhile significantly increased content of organic taste compounds of soy sauce compared with control (p < 0.05). Sonication markedly reduced percentage of α-helix and increased percentage of random coil, made hydrophobic amino acids inside prolyl endopeptidase exposed to its surface and enhanced its flexibility, which facilitated the binding of prolyl endopeptidase active center with B3 subunit and finally enhanced the latter's degradation rate and appearance quality of soy sauce. This work laid a foundation for solving soy sauce secondary precipitate.


Assuntos
Alimentos de Soja , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Prolil Oligopeptidases/metabolismo , Peso Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Fermentação , Estrutura Secundária de Proteína , Sonicação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...